

LLM: Context Window and RAG
In just two years, we have seen the impressive rise of Large Language Models (LLMs) on a massive scale, with releases like ChatGPT. These models have shown incredible capabilities, but they also have a limitation with the context window. If you have ever used an LLM and tried to input a large amount of information, you have likely encountered the “Context Window Mark” issue.
Before we understand more about the context window, lets first quickly understand what tokens are.
Tokens, in the context of language models, are the basic units of text processing. They represent individual words, punctuation marks, or other linguistic elements within a given piece of text.

We have added the sentence: “YourGPT Chatbot is a great tool to automate your customer service with AI. With the No-Code Builder Interface, quickly create and deploy your AI chatbot.” where each word and the punctuation mark are separate tokens, adding up to 35 tokens in total.
Understanding tokens is important because each token consumes a portion of the model’s memory limit, as defined by the context window. This constraint directly impacts how much information the model can process at once. Now that we know about tokens, let’s see the concept of the context window and its impact on LLMs, along with the concept of Retrieval-Augmented Generation (RAG) and the influence of a long context window.

The context window in language models refers to the maximum length of text (measured in tokens) that a model can consider at one time for processing. This limitation affects how much information the model can analyse and respond to in tasks such as translation, answering questions, or generating text.
Context window sizes differ across LLMs; for example, GPT-3.5-turbo-0613 has a context window of 4,096 tokens. Gemini 1.5, on the other hand, expands this to 1 million tokens.
This means that the combined count of input tokens, output tokens and other control tokens cannot exceed 4,096 in the case of GPT-3.5-turbo-0613 and 1 million for Gemini. In simple terms, it imposes a restriction on the amount of instruction you can provide to the system and the maximum tokens allowed for response generation. If this limit is exceeded, an error occurs.
The problem with the context window in large language models is its fixed size, which restricts the amount of text the model can consider at one time. This can make it hard for the model to understand and answer questions that require more context-specific information.
To Fix this Context window issue, the researchers have introduced an approach Called RAG

RAG stands for Retrieval-Augmented Generation. RAG is a hybrid approach to natural language processing that enhances the capabilities of large language models by combining the generative powers of models like GPT, Claude, and Gemini with their information retrieval functionalities. It is a key component of the llm framework and rag architecture.
RAG works by retrieving the relevant documents or data from a large corpus and then using this context information to generate responses to user queries. This method allows the model to produce more accurate, informed, and contextually relevant outputs, especially in cases where the answer needs specific knowledge that is not stored in the model’s training data. The rag retrieval process is a crucial step in the rag model. Read the retrieval augmented generation paper.
There is a debate in the AI community about long context v/s RAG:
Retrieval-Augmented Generation (RAG) is an AI approach that integrates traditional information retrieval methods, like databases, with the advanced features of generative large language models (LLMs). This combination allows the AI to produce text that is more accurate, relevant to your specific requirements by using both external knowledge and its language abilities.
RAG operates in two main phases:
This process allows the LLM to provide more accurate, current, and contextually relevant answers.
RAG offers several advantages:
The vector store plays a crucial role in the retrieval phase of RAG:
The combination of context windows and Retrieval-Augmented Generation (RAG) represents a significant advancement in improving the efficiency of Large Language Models (LLMs). Context windows determine how much information LLMs can handle at once, sometimes limiting their potential. RAG addresses this by incorporating external data, enhancing response accuracy and context relevance.
The AI community continues to discuss long-context models versus RAG. Instead of choosing one over the other, integrating RAG with long-context LLMs is the ideal solution, creating a powerful system capable of efficiently retrieving and processing large-scale information.
Deploy the chatbot in mintues!

Shopify stores often use a chatbot on their website to handle product questions, order updates, and support. But customers also message on WhatsApp expecting the same quick answers. Most of them already use WhatsApp throughout the day, so reaching out there feels natural. A chatbot that works across both channels responds in seconds, guides purchase […]


Artificial Intelligence has advanced quickly over the past five years, moving from an experiment to a standard component of modern business. AI has become a central part of enterprise strategy. 88% of organizations are now using AI. This figure has increased from 78% the year before. This transformation is reshaping how companies run, communicate, and […]


You invest time writing your website copy. You explain features, pricing, and how everything works. The information is there. Still, some visitors leave without clarity, and small gaps in understanding often stop them from moving forward. This happens because a static page cannot adjust to what they want at that moment. They skim a section, […]


AI agent and live chat each play a different role in customer support, and the choice between them influences how a team handles growth. Companies are moving toward faster support models, and one clear trend is the use of AI to reduce operating costs by up to 30%. The difference shows up when ticket volume […]


You have definitely heard about the use of AI in marketing. But have you ever seen or learned how it can actually drive revenue? Well, firms using AI in marketing and sales report significant benefits. According to a recent study by McKinsey & Company, revenue increases from AI show up most in marketing and sales, […]


Every business talks about improving customer experience, but many struggle to understand what that experience actually looks like from the customer’s side. This is where a customer journey map becomes essential. It is a practical way to see how people discover your brand, evaluate their options, make a purchase, and decide whether to come back […]
